Chapter 4
 Section 4.1

Activity

Suppose that a zombie outbreak has started. Each day a zombie can infect one more person with the zombie virus, turning them into a zombie as well. For the activity, also assume that no zombies get killed.
a.) On day 0 there is one zombie. On day 1 he infects another and there are now 2 zombies. How many zombies will there be on day 4 ?
b.) How many zombies will there be on day 7 ?
c.) Can you create a function that tells you how many zombies there are for each day?
d.) How will the above numbers be effected if a zombie can infect 2 people per day?

Further Questions: What happens if we start with more than one zombie? Is there a way to tell on what day a certain number of zombies has been reached?

Def: An \qquad with base a is a function of the form
where x is any real number and a is a real constant such that $a>0$ and $a \neq 1$.
Q: Why can't $a=1$?
Q: Why can't $a<0$?
Ex: Let $f(x)=4^{x}$ and $h(x)=\left(\frac{1}{3}\right)^{x}$. Evaluate $f(3 / 2)$ and $h(-2)$.

Domain of Exponential Functions

The domain of $f(x)=a^{x}$ for $a>0$ and $a \neq 1$ is the set of all real numbers, \mathbb{R}
Q: How do we get $2^{\sqrt{3}}$?

Graphing Exponential Functions

Ex: Graph $f(x)=2^{x}$ and $g(x)=(1 / 2)^{x}$

Properties of Exponential Functions

The exponential function $f(x)=a^{x}$ has the following properties:
i) The function f is increasing for $a>1$ and decreasing for $0<a<1$.
ii) The y-intercept of the graph of f is $(0,1)$.
iii) The graph has the x-axis as a horizontal asymptote.
iv) The domain of f is $(-\infty, \infty)$ and the range of f is $(0, \infty)$
v) The function f is one-to-one.

Exponential Transformations

If $f(x)=a^{x}$ is an exponential function, then the function $g(x)=b \cdot a^{x-h}+k$ is a transformation of the graph of f.
Ex: Graph $y=2^{x-3}$ and $f(x)=-4+3^{x+2}$.

Exponential Equations

Because exponential functions are one-to-one we have that: For $a>0$ and $a \neq 1$

$$
\text { if } a^{x_{1}}=a^{x_{2}} \text {, then } x_{1}=x_{2}
$$

Ex: Solve $4^{x}=\frac{1}{4}$ and $\left(\frac{1}{10}\right)^{x}=100$

Compound Interest

Similar to the zombie problem, if money is left in a bank, your interest will earn interest and so on so that the longer the money stays the more you earn.
Formula: If a principal P is invested for t years at an annual rate r compounded n times per year, then the amount A, or ending balance, is given by

$$
A=P\left(1+\frac{r}{n}\right)^{n t}
$$

Ex: Find how much money you have in the bank after 3 years if you started with 20,000 with an interest rate of 6% compounded daily.

Q: What would happen if you compound continuously?
Def: $e=\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right) \approx 2.718281828459$
Practice: 22, 28, 32, 36, 42, 48, 52, 64, 73

